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We identify points near the geometric trinity of gravity, positioned between general relativity, its teleparallel
equivalent, and Einstein–Cartan theory, in which the conventional multipliers suppress only part of the torsion.
In this configuration, a quadratic curvature invariant can be added without introducing strongly-coupled torsion
modes. The total effect is to augment GR with either a vector or pseudovector Proca field, which couples to the
matter spin current(s).
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Introduction. – Gravity may be coupled to fermions by
gauging the Lorentz group [1–3], and so augmenting the
Levi–Civita connection Γ̊𝜇𝜆𝜈 with spacetime torsion Γ𝜇𝜆𝜈 ≡
Γ̊𝜇𝜆𝜈 −

1
2

(

𝑇 𝜇𝜆𝜈 − 𝑇 𝜇
𝑛 𝜆 + 𝑇 𝜇

𝜆𝜈
). The conservative Einstein–

Cartan (EC) approach to including torsion [1, 4, 5] retains
the Einstein–Hilbert action 𝐿EC ≡ − 1

2𝑀Pl2𝑅, but uses
the Riemann–Cartan curvature scalar1 𝑅. In the presence
of matter, the torsion integrates out algebraically [1, 6, 7] to
give the effective theory in 𝑔𝜇𝜈 of general relativity (GR), but
where the symmetrised matter stress-energy tensor now re-
ceives ∼ 𝜓̄𝜓𝜓̄𝜓∕𝑀Pl2 fermionic corrections [8, 9]. Plausi-
bly, such corrections may only become relevant in the very
early Universe [9–12] or within black holes [10, 13–15], where
they may remove singularities. EC theory reverts to GR when
the torsion is suppressed by a multiplier field

𝐿GR ≡ −1
2
𝑀Pl2𝑅̊ ≃ −1

2
𝑀Pl2𝑅 + 𝜆𝜇𝜈𝜎𝑇

𝜇𝜈𝜎 . (1)
It is a remarkable fact that linearly connected spacetime en-
compasses two alterntive realisations of free GR. The ‘metric’
teleparallel equivalent of GR (TEGR) [16]
𝐿TEGR ≡ 4

9
𝑀Pl2 𝑇(1)

𝜇[𝜈𝜎] 𝑇(1) 𝜇[𝜈𝜎] − 1
3
𝑀Pl2 𝑇(2)

𝜇 𝑇(2) 𝜇

+ 3
4
𝑀Pl2 𝑇(3)

𝜇 𝑇(3) 𝜇 + 𝜆𝜇𝜈𝜎𝜆𝑅
𝜎𝜆

𝜇𝜈 ,
(2)

— where 𝑇(1) 𝜇𝜈𝜎 , 𝑇(2) 𝜇 and 𝑇(3) 𝜇 are the tensor, vector and
pseudovector irreducible parts of the torsion2 — has the prop-
erty 𝐿GR ≃ 𝐿TEGR despite suppressing the Riemann cur-
vature with a multiplier field. The ‘symmetric’ alternative
(STEGR) [17] is reached by relaxing the metricity condition
∇𝜇𝑔𝜈𝜎 ≡ 0while suppressing both curvature and torsion. Nor-
mal GR as in (1) implicitly enforces metricity via yet another
multiplier. The familiar IR limit of free gravity is recovered at
each vertex in this geometrical trinity [18, 19].
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1 We work with the ‘West Coast’ signature (+,−,−,−) and use the conven-

tions 𝑅 ≡ 𝑅𝜆𝜆 and 𝑅𝜇𝜈 ≡ 𝑅𝜆𝜇𝜆𝜈 for 𝑅 𝜎
𝜇𝜈𝜆 ≡ 2𝜕[𝜈Γ

𝜎
𝜇]𝜆 + 2Γ𝜎[𝜈|𝜅Γ

𝜅
|𝜇]𝜆, and

analogously for the Riemann tensor 𝑅̊ 𝜎
𝜇𝜈𝜆 in terms of Γ̊𝜎𝜇𝜈 .

2 We use the decomposition 𝑇 𝜇𝜈𝜎 ≡ 4
3 𝑇(1) 𝜇

[𝜈𝜎] +
2
3 𝛿

𝜇
[𝜈 𝑇(2)

𝜎] + 𝜖
𝜇
𝜈𝜎𝜆 𝑇(3) 𝜆.
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FIG. 1. Strong coupling in the system 𝐿 = 𝑞̇21 − 𝑞
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perturbative ‘approximation’ is 𝐿 ≈ 𝑞̇21 − 𝑞21 − 𝑞22 , but this predicts
an erroneous vacuum 𝑞2 = 𝑞1 = 𝑝1 = 0 (left), where the true double
oscillator (right) has a fatal separatrix. Strongly-coupled d.o.f, anal-
ogous to 𝑞2, reveal themselves via structural changes to the Hamil-
tonian constraint algebra when passing from linearised to nonlinear
gravity theories. In such cases it is not clear how background of the
linearisation can then be a viable spacetime, even though it may solve
the nonlinear field equations.

As illustrated in Fig. 1, attempts to explore the landscape sur-
rounding the trinity vertices – be they Wilsonian extensions
out of the IR, or modified gravity theories – are crippled by
the strong coupling problem [20–25]. Higher-order operators
typically introduce degrees of freedom (d.o.f) which are not
captured by the linearised particle spectra [22–25]. Strongly
coupled torsion modes are also guaranteed to be ghosts by
the same conditions which keep the linear theory unitary [26–
30]. Regardless of the implications for the 𝑆-matrix, it is un-
derstood that strongly coupled modes render the background
(Minkowski) spacetime dynamically unreachable [31].

This letter presents a ‘dynamically consistent’ (DC) theory

𝐿DC ≡ −1
2
𝑀Pl2𝑅 + 𝛼̂5𝑅[𝜇𝜈]𝑅

[𝜇𝜈] + 𝜆(1)
𝜇𝜈𝜎 𝑇(1) 𝜇𝜈𝜎

+ 𝛽2𝑀Pl2 𝑇(2)
𝜇 𝑇(2) 𝜇 + 𝛽3𝑀Pl2 𝑇(3)

𝜇 𝑇(3) 𝜇,
(3)

which is reached (e.g. by the Wilsonian expansion) from a
point between GR in (1) and TEGR in (2). In isolation, the in-
variant 𝑅[𝜇𝜈]𝑅

[𝜇𝜈] — forbidden in GR due to 𝑅̊[𝜇𝜈] ≡ 0 — is
also a forbidden higher-order correction to EC gravity because
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it introduces six strongly coupled d.o.f [20, 27, 29]. Indeed, it
is commonly thought that only scalar torsion can safely prop-
agate in a 𝐿 ∼ 𝑅 +𝑅2 + 𝑇 2 theory [30, 32–35]. However we
show that this outlook only holds when the usual multipliers
act to disable torsion or curvature in their entirety. By split-
ting multipliers between individual SO+(1, 3) torsion irreps,
the DC theory allows, for the first time, some higher-spin vec-
tor torsion to propagate in a dynamically consistent manner.

This mechanism opens up the route to finding viable
archipelagos around the geometric trinity. The more prosaic
objection still remains: the affected modes tend to be ghosts
anyway [26–30], so removing them entirely seems preferable
to rendering them perturbative. Indeed, we will find that in (3)
the 𝑇(2)

𝜇 and 𝑇(3)
𝜇 are Proca fields of bare mass3

𝑚(2) 2 = −
3𝑀Pl2(1 + 2𝛽2 )

4𝛼̂5
, (4a)

𝑚(3) 2 = −
3𝑀Pl2(1 + 8𝛽3 )

4𝛼̂5
, (4b)

but also that these are ghosts unless 𝛼̂5 > 0 and 𝛼̂5 < 0 re-
spectively. The solution, whatever the sign of 𝛼̂5 , is the simple
modification 𝐿DC + 𝜆(2)

𝜇 𝑇(2) 𝜇 or 𝐿DC + 𝜆(3)
𝜇 𝑇(3) 𝜇. Either

ghost is then suppressed, whilst still evading strong coupling
of the remaining, unitary Proca field.
Nonlinear Hamiltonian analysis. – The mechanism by which
strong coupling is eliminated should be demonstrated in the
Hamiltonian framework [37–41], since this is how the problem
is usually identified [20, 32, 42]: we now do this for the single-
Proca case 𝐿DC + 𝜆(2)

𝜇 𝑇(2) 𝜇, while referring to Fig. 2.
In non-Riemannian gravity the gauge fields may be taken

as the tetrad 𝑒𝑖𝜇, where 𝑔𝜇𝜈 ≡ 𝜂𝑖𝑗 𝑒
𝑖
𝜇𝑒
𝑗
𝜈 , and independent

spin connection 𝜔𝑖𝑗𝜇 ≡ 𝜔[𝑖𝑗]
𝜇 [38], and we must also count

with these the multipliers 𝜆(1) 𝜎
𝜇𝜈 and 𝜆(2)

𝜇 [43]. As is typ-
ical of gauge theories such as (3), many (spin-parity, 𝐽𝑃 )
parts of the 𝑋-field momenta 𝜋𝐽𝑃𝑋 ≡ 𝜕∕𝜕𝑋̇𝐽𝑃 , for  =
𝑒
(

𝐿DC + 𝜆(2)
𝜇 𝑇(2) 𝜇) and 𝑒 ≡ det 𝑒𝑖𝜇, cannot be inverted

for the velocities 𝑋̇𝐽𝑃 [37, 38, 41]. Instead, their defini-
tions imply primary constraints 𝜙𝐽𝑃𝑋 ≈ 0 which vanish ‘on-
shell’ [29, 30, 36]. For example the 𝜙𝐽𝑃

𝜆(1) and 𝜙𝐽𝑃
𝜆(2) are just de-

fined as all the momenta of 𝜆(1) 𝜎
𝜇𝜈 and 𝜆(2)

𝜇. For a complete
Hamiltonian description of the dynamics, Hamiltonian mul-
tipliers 𝑢𝐽𝑃𝑋 must be introduced to the phase space, emulating
missing 𝑋̇𝐽𝑃 . If  is the Legendre-transformed , the Hamil-
tonian ′ ≡  +

∑

𝑋,𝐽 ,𝑃 𝜙
𝐽𝑃
𝑋 𝑢𝐽𝑃𝑋 can describe the complete

dynamics for all solutions to the 𝑢𝐽𝑃𝑋 which maintain 𝜙𝐽𝑃𝑋 ≈ 0.
In the linear theory near Minkowski spacetime, many of the
𝑢𝐽𝑃𝑋 can be determined at once by considering that the the 𝜙𝐽𝑃𝑋

3 We avoid extra symmetries by assuming 𝛽2 ≠ −1∕2 and 𝛽3 ≠ −1∕8 [36].
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FIG. 2. The constraint algebra of𝐿DC+ 𝜆(2)
𝜇 𝑇(2) 𝜇 as defined from (3),

as it appears in its simplest form on the constraint shell. All Hamilto-
nian multipliers 𝑢𝐽𝑃𝑋 are eventually determined by satisfying the con-
sistency conditions (5) of the primary constraints 𝜙𝐽𝑃𝑋 (lines coloured
by 𝐽 𝑃 ) via abundant (1) Poisson brackets (yellow squares). Pertur-
bative brackets (red squares) do not reduce the number of induced
constraints 𝜒𝐽𝑃𝑋 , 𝜁𝐽𝑃𝑋 and 𝜃𝐽𝑃𝑋 , which would otherwise indicate strong
coupling. Some brackets (grey squares) were not computed in detail
for this work. Subtracting the ∑

𝐽 2𝐽 + 1 constrained multiplicities
leaves the three extra d.o.f of a Proca theory.

must be static to remain zero, i.e. they must have vanishing
Poisson brackets {𝜙𝐽𝑃𝑋 ,′} ≈ 0, or

{

𝜙𝐽
𝑃

𝑋 ,
}

+
∑

𝑋′,𝐽 ′,𝑃 ′

{

𝜙𝐽
𝑃

𝑋 , 𝜙𝐽
′𝑃 ′

𝑋′
}

𝑢𝐽
′𝑃 ′

𝑋′ ≈ 0. (5)

In particular, the 𝜙𝐽𝑃
𝜆(2) and some 𝜙𝐽𝑃

𝜆(1) have (1) brackets with
the 𝜙𝐽𝑃𝑒 which determine via (5) the 𝑢𝐽𝑃

𝜆(2) , some 𝑢𝐽𝑃
𝜆(1) and all

𝑢𝐽𝑃𝑒 . The 𝑢𝐽𝑃𝑒 would then be over-determined by the 𝜙𝐽𝑃𝜔 ,
whose staticity conditions, and those of the remaining𝜙𝐽𝑃

𝜆(1) , in-
stead imply secondary constraints 𝜒𝐽𝑃𝜔 ≈ 𝜒𝐽𝑃

𝜆(1) ≈ 0 [43]. The
conditions {𝜒𝐽𝑃𝑋 ,′} ≈ 0 determine most remaining 𝑢𝐽𝑃𝑋 , but
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the tertiary 𝜁𝐽𝑃
𝜆(1) and quaternary 𝜃𝐽𝑃

𝜆(1) constraints are required
to determine them all. The lack of undetermined multipliers4
is consistent with the absence of extra gauge symmetries ex-
pected for nonvanishing Proca mass in Eq. (4b).

In the nonlinear theory, many new commutators arise. Typ-
ically this would allow more 𝑢𝐽𝑃𝑋 to be determined by (5), re-
quiring fewer 𝜒𝐽𝑃𝑋 and hence emergent d.o.f in the nonlinear
theory. For example𝐿EC+𝛼̂5𝑅[𝜇𝜈]𝑅

[𝜇𝜈] propagates zero extra
d.o.f when linearised, but six in general [20]. In our case, how-
ever, the abundant (1) commutators already solve for the 𝑢𝐽𝑃𝑋
as efficiently as the possible pairings among the 𝜙𝐽𝑃𝑋 of each
given 𝐽𝑃 allow: exactly three of those six extra d.o.f — 𝑇(3)

𝜇
subject to ∇̊𝜇 𝑇(3) 𝜇 = 0 — are always present.
Effective field equations. – The constraint structure in Fig. 2
indicates greatly improved dynamical properties, compared to
the usual higher-derivative extensions mentioned above. To
access the phenomenology, we translate the resulting theory
back into the familiar second order formalism of GR [38]. We
will generalise back from 𝐿DC + 𝜆(2)

𝜇 𝑇(2) 𝜇 to the full double-
Proca case in (3). In the first order formalism [1] the 𝑒𝑖𝜇 field
equation refers to the translational current

𝜏𝜇𝑘 (𝜔) ≡ − 𝛿
𝛿𝑒𝑘𝜇 ∫ d4𝑥𝑒𝐿M (𝜔) , (6)

in which 𝜔𝑖𝑗𝜇 is held constant. Presuming that the matter La-
grangian is up to first order in 𝜔𝑖𝑗𝜇, which is true in the case
of Dirac matter, this can be partitioned

𝐿M(𝜔) = 𝐿M(Δ) − 1
2
𝜎𝜇𝑖𝑗

(

𝜔𝑖𝑗𝜇 − Δ𝑖𝑗𝜇
)

, (7)

where all dependence on the torsion is concentrated into the
second term, which is proportional to the spin tensor of matter

𝜎𝜇𝑖𝑗 ≡ − 𝛿
𝛿𝜔𝑖𝑗𝜇 ∫ d4𝑥𝑒𝐿M (𝜔) , (8)

and the Ricci rotation coefficients Δ𝑖𝑗𝜇 are the torsion-free
limit of 𝜔𝑖𝑗𝜇, depending only on 𝜕[𝜇𝑒𝑖𝜈]. Using (7) and (6),
the translational current can also be partitioned into 𝜏𝜇𝑘 (𝜔) =
𝜏𝜇𝑘 (Δ) + 𝜏

𝜇
𝑘 (𝜔 − Δ). The second term is computed in terms

of torsion and spin, given the (Dirac matter) dependence of
𝜎𝜇𝑖𝑗 on 𝑒𝑖𝜇. The first term is related to the Einstein stress-
energy tensor [44]

𝑇 𝜇𝜈 = 𝜏𝜇𝜈 (Δ) −
1
2
∇̊𝜆

(

𝜎 𝜇𝜆
𝜈 − 𝜎𝜆 𝜇

𝜈 + 𝜎𝜇 𝜆
𝜈
)

. (9)

4 Our discussion assumes the presence of ten primary constraints of the super-
momenta (which include ′ ≈ 0), and their undetermined multipliers
(which include the lapse and shift). These are basic features of the Poincaré
gauge symmetry [38].

By projecting out the tensor part of the 𝜔𝑖𝑗𝜇 field equation, the
multiplier 𝜆(1) 𝜆

𝜇𝜈 can always be eliminated as an algebraically
determined quantity. The antisymmetric part of the 𝑒𝑖𝜇 field
equation is an identity, and by using (9) and separating the
torsion from the Riemann–Cartan curvature5 the symmetric
part can eventually be shown to descend from the following
effective theory

T ≃
√

−𝑔
[

−
𝑀Pl2
2

𝑅̊ +
2𝛼̂5
9

𝐹(2)
𝜇𝜈 𝐹(2) 𝜇𝜈 −

𝛼̂5
2

𝐹(3)
𝜇𝜈 𝐹(3) 𝜇𝜈

+
𝑀Pl2
3

(1 + 2𝛽2 ) 𝑇(2)
𝜇 𝑇(2) 𝜇 −

3𝑀Pl2
4

(1 + 8𝛽3 ) 𝑇(3)
𝜇 𝑇(3) 𝜇

− 1
3

𝑇(2)
𝜇 𝑆(2) 𝜇 − 3

2
𝑇(3)
𝜇 𝑆(3) 𝜇 + 𝐿M

(

Γ̊
)

]

. (10)

In (10), the Maxwell terms are 𝐹(2)
𝜇𝜈 ≡ 2𝜕[𝜇 𝑇(2)

𝜈] , etc., so
that the origin of the Proca fields and their masses in Eqs. (4a)
and (4b) is revealed. We define 𝑆𝜇𝑖𝑗 ≡ 𝜎𝜇𝑖𝑗∕𝑒. That these
fields alone are propagating, and that they are sourced by the
vector and pseudovector matter spin currents, may readily be
confirmed by the parts of the 𝜔𝑖𝑗𝜇 equation which do not serve
to determine 𝜆(1) 𝜆

𝜇𝜈 . The mandatory ghost-status of either one
of the fields is also easy to read off from (10).
Einstein–Proca phenomenology. – [45]
Implications for fermion physics. – We expect the matter sec-
tor to contain various species 𝑌 of Dirac or Majorana fermions,
from whose kinetic terms we can extract those parts which do
not refer to internal gauge fields

𝐿M
(

Γ
)

⊃ 𝑖
2
∑

𝑌

[

𝜓̄𝑌
(

1 − 𝑖𝛼 − 𝑖𝛽𝛾5
)

𝛾 𝑖𝑒 𝜇𝑖 ∇𝜇𝜓𝑌

− ∇𝜇𝜓𝑌
(

1 + 𝑖𝛼 + 𝑖𝛽𝛾5
)

𝛾 𝑖𝑒 𝜇𝑖 𝜓𝑌
]

.
(11)

In (11) we follow [46] in allowing for non-minimal coupling
through the universal, real parameters 𝛼 and 𝛽 [47–50]. It
is important to accommodate for these extensions, since they
yield different effective ∼ 𝜓̄𝜓𝜓̄𝜓∕𝑀Pl2 interactions in the
EC theory, and its natural Wilsonian extension in which the
Barbaro–Immirzi parameter is finite. Based on (11) the spin
sources in (10) are

𝑆(2) 𝜇 =
∑

𝑌

3
2
𝜓̄𝑌

(

𝛼 + 𝛽𝛾5
)

𝑒 𝜇𝑖 𝛾
𝑖𝜓𝑌 , (12a)

𝑆(3) 𝜇 = −
∑

𝑌

1
2
𝜓̄𝑌 𝛾

5𝑒 𝜇𝑖 𝛾
𝑖𝜓𝑌 , (12b)

so that 𝑇(2)
𝜇 and 𝑇(3)

𝜇 are sourced from the non-minimal and
minimal sectors respectively.
Concluding remarks. –

5 Recall the standard formula 𝑅 ≡ 𝑅̊ + 8
9 𝑇(1)

𝜇𝜈𝜎 𝑇(1) 𝜇[𝜈𝜎] − 2
3 𝑇(2)

𝜇 𝑇(2) 𝜇 +
2
3 𝑇(3)

𝜇 𝑇(3) 𝜇 − 2∇̊𝜇 𝑇(2) 𝜇 which gives rise to (2).
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