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Stephanie's bosonic particle spec-
tra in de Sitter: theoretical
development

Connection to Part llI Project: The aim here is to explore how the standard
particle spectrum/saturated propagator algorithm can be applied in a de Sitter spacetime. We will
explore the case of a massless scalar field, and GR linearised in the presence of a cosmological
constant.

Package xAct xPerm® version 1.2.3, {2015, 8, 23}
CopyRight (C) 2003-2020, Jose M. Martin-Garcia, under the General Public License.
Connecting to external linux executable...

Connection established.

Package xAct' xTensor® wversion 1.2.0, {2021, 10, 17}

CopyRight (C) 2002-2021, Jose M. Martin-Garcia, under the General Public License.

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute

it under certain conditions. See the General Public License for details.

Package xAct' xPert® version 1.0.6, {2018, 2, 28}

CopyRight (C) 2005-2020, David Brizuela, Jose M. Martin-Garcia

and Guillermo A. Mena Marugan, under the General Public License.

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute

it under certain conditions. See the General Public License for details.

*+x Variable $PrePrint assigned value ScreenDollarIndices
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*»* Variable $CovDFormat changed from Prefix to Postfix
** Option AllowUpperDerivatives of ContractMetric changed from False to True
*»+ Option MetricOn of MakeRule changed from None to All

*»* Option ContractMetrics of MakeRule changed from False to True

Package xAct'Invar® version 2.0.5, {2013, 7, 1}

CopyRight (C) 2006-2020, J. M. Martin-Garcia,

D. Yllanes and R. Portugal, under the General Public License.
»+ DefConstantSymbol: Defining constant symbol sigma.
x»* DefConstantSymbol: Defining constant symbol dim.
** Option CurvatureRelations of DefCovD changed from True to False

*»* Variable $CommuteCovDsOnScalars changed from True to False

Package xAct xCoba® version 0.8.6, {2021, 2, 28}

CopyRight (C) 2005-2021, David Yllanes and

Jose M. Martin-Garcia, under the General Public License.

Package xAct SymManipulator® version 0.9.5, {2021, 9, 14}

CopyRight (C) 2011-2021, Thomas Backdahl, under the General Public License.

Package xAct xTras' version 1.4.2, {2014, 10, 30}
CopyRight (C) 2012-2014, Teake Nutma, under the General Public License.
+»* Variable $CovDFormat changed from Postfix to Prefix

*»+ Option CurvatureRelations of DefCovD changed from False to True

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute

it under certain conditions. See the General Public License for details.

Define a manifold and curved metric.

+»» DefManifold: Defining manifold M4.

+»+ DefVBundle: Defining vbundle TangentM4.

= DefTensor: Defining symmetric metric tensor G[-a, -c].

+»» DefTensor: Defining antisymmetric tensor epsilonG[-a, -b, -c, -d].
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DefTensor: Defining tetrametric TetraG[-a, -b, -c, -d].

DefTensor: Defining tetrametric TetraGf[-a, -b, -c, -d].

DefCovD: Defining covariant derivative CD[-a].

DefTensor: Defining vanishing torsion tensor TorsionCD[a, -b, -c].
DefTensor: Defining symmetric Christoffel tensor ChristoffelCD[a, -b, -c].
DefTensor: Defining Riemann tensor RiemannCD[-a, -b, -c, -d].

DefTensor: Defining symmetric Ricci tensor RicciCD[-a, -b].

DefCovD: Contractions of Riemann automatically replaced by Ricci.
DefTensor: Defining Ricci scalar RicciScalarCD[].

DefCovD: Contractions of Ricci automatically replaced by RicciScalar.
DefTensor: Defining symmetric Einstein tensor EinsteinCD[-a, -b].
DefTensor: Defining Weyl tensor WeylCD[-a, -b, -c, -d].

DefTensor: Defining symmetric TFRicci tensor TFRicciCD[-a, -b].

DefTensor: Defining Kretschmann scalar KretschmannCD[].

DefCovD: Computing RiemannToWeylRules for dim 4

DefCovD: Computing RicciToTFRicci for dim 4

DefCovD: Computing RicciToEinsteinRules for dim 4

DefTensor: Defining symmetrized Riemann tensor SymRiemannCD[-a, -b, -c, -d].
DefTensor: Defining symmetric Schouten tensor SchoutenCD[-a, -b].
DefTensor: Defining symmetric cosmological Schouten tensor SchoutenCCCD[LI[ ], -a, -b].
DefTensor: Defining symmetric cosmological Einstein tensor EinsteinCCCD[LI[], -a, -b].
DefTensor: Defining weight +2 density DetG[]. Determinant.

DefParameter: Defining parameter PerturbationParameterG.

DefTensor: Defining tensor PerturbationG[LI[order], -a, -b].
DefConstantSymbol: Defining constant symbol EinsteinConstant.
DefConstantSymbol: Defining constant symbol CosmologicalConstant.
DefTensor: Defining tensor ScaleFactor]].

DefConstantSymbol: Defining constant symbol HubbleNumber.
DefConstantSymbol: Defining constant symbol HubbleScale.

DefTensor: Defining tensor V[-a].

Rules {1, 2} have been declared as UpValues for V.

Rules {1} have been declared as UpValues for V.

| 3
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Rules {1} have been declared as UpValues for ScaleFactor.

Define the Einstein constant « the scale factor a, Hubble number (constant) H, cosmological constant
A, comoving Hubble number , and the n_-vector which will be unit-timelike in the flat spacetime to

which de Sitter is conformal. Note that the unit-timelike vector will have downstairs valence, so that it
naturally inherits the tensor character of derivative operators later on without the need for a metric.

Linearised Klein-Gordon theory

+»+ DefTensor: Defining tensor Phi[].

In the first instance we consider a massless, shift-symmetric Klein-Gordon field. We allow the back-
ground spacetime to become de Sitter.

1 =
> -5 Vo7 o

By a Weyl-rescaling purely of the scalar field (but not of the metric), we can of course obtain from Eq.
(1) the following version of the theory.

L oo a 1 7
Ef-/ ®*a’-Hoan vq¢+5vu¢v¢ )

Note thatin Eq. (2) the covariant derivative is really the partial derivative on the (fictional) flat space-
time, whose coordinates are the conformal coordinates of the de Sitter spacetime. The form of the
theory looks a bit cryptic still, but by an additional surface term we can obtain from Eq. (2) the follow-
ing version.

1
H* ¢*a’ + 5 V.V 3)
Okay, so Eq. (3) is now looking much better. Let's finally move to the comoving Hubble.

H? ¢2+Ev VP (4)
2 Q

Connection to Part Il Project: So we see that Eq. (1) on de Sitter actually looks

like Eq. (4) on flat space. This would seem superficially to be a disaster: something that looks like a
tachyonic mass term has appeared! Actually, we know that this is okay. The mass term is time-
dependent because the Hubble scale here is comoving; as a result the evolution of the system can be
found using the standard Bessel method. This is all consistent with what we know about the cosmo-
logical mode functions. However the tachyonic mass interpretation will be really important for
putting together a consistent de Sitter particle spectrum dictionary for more general models. Next,
we'll look at the graviton.
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Linearised general relativity

+»+ DefTensor: Defining tensor LinearMetric[-a, -b].

+«» DefTensor: Defining tensor LinearMetrict[-a, -b].

Define a tensor Moy which acts as the linear metric.

+*» DefTensor: Defining tensor TraceReversedLinearMetric[-a, -b].
+»+ DefTensor: Defining tensor TraceReversedLinearMetrict[-a, -b].
+»+ DefTensor: Defining tensor TraceLinearMetric[].
+«» DefTensor: Defining tensor TracelLinearMetrict[].

Define the trace-reversed metric perturbation /;ub and the trace of the metric perturbation A.

Rules {1, 2} have been declared as DownValues for TraceReversedLinearMetric.

Now we define the Einstein-Hilbert action. We're going to have to be quite careful, and build the
quadratic aspect of the Lagrangian density up slowly using variational derivatives.

Background terms

First term, the Hilbert term.

\/3 RIV]

- (5)
2K
Second term, the source.
/\ _:
) g (6)
K
First order terms
The first order correction to Eq. (5) is as follows.
~g (GIvVI* h+2 GIV]™ 5,
\/7( a hub) (7)
4K
The first order correction to Eq. (6) is as follows.
A -G h
S (8)
2K

Second order terms
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The second order correction to Eq. (5) is as follows.

-5 (R[V] W =2R] oy 1 -4 GV (/1 hao *2 bt ,;bc)+hvav°h+4 P A T vcv°,;qb)

8k

9)

The second order correction to Eq. (6) is as follows.

A ‘/_75 (hz -2 }jlub };Qb)

4k

(10)

+» DefTensor: Defining tensor Gen[a].
Now define a generating vector ° for diffeomorphisms of the background. The Lie derivative induces

the following change to 4, at first order.

VoV, + %V, (11)
And the following change at second order.

Ky VeV + B YV + V Ve, (12)

The next step is to transform Egs. (7), (8), (9), and (10) using the first and second order changes Eqs.
(11), and (12), to lowest order in <V*, and then take the variational derivative of the transformed

quantity (integrated over the spacetime) with respect to ° .

First order terms

Variation of Eq. (7) using Eq. (11).
0 (13)
Variation of Eq. (7) using Eq. (12).

V-G V* (6T, Vah=2 1YL, Ph+2 GV (Tohy, - 2%y )

4K

(14)

Variation of Eq. (8) using Eq. (11).
0 (15)

TensorTheory

Variation of Eq. (8) using Eq. (12).
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A=-g V° Vop°

(16)
K
Second order terms
Variation of Eq. (9) using Eq. (11).
\/—75 ° (G[V]bb Voh -2 G[V],, VPh+2 GV (Vn/?bc -2vc,;qb)) -
2K
Variation of Eq. (10) using Eq. (11).
A5V Wi 0o

K

So we see in Eq. (13) and by comparing Eq. (14) with Eq. (17), and also in Eq. (15) and by comparing Eq.
(16) with Eq. (18), that there is cancellation across orders (don't forget the factor of two from the
perturbative expansion) and within the gravitational and source sectors individually due to Bianchi and
the conservation of stress-energy (which are separately true).

Now we take Eq. (17) and we confine to the background shell.

2A -G V° V) P
gV Vop, (19)

K

So from Eq. (19) we notice that Eq. (14) and Eq. (16), as well as Eq. (17) and Eq. (18), would cancel across
the matter and gravity sectors but within each order, just due to the background shell.

Weyl transformation

Let's check that the Weyl-transformed first-order operator is satisfying the background field equations.
We add Eq. (7) to Eq. (8) to obtain the first order part of the whole free-space Lagrangian, and then we
rescale the metric perturbation 4, accordingto our rules.

/\ _: a _: ab _ a
AN ) V-5 (2 gy RIVI™ - 10 RIV]) -
2K 4K

(N-3H) K a®
A (21)
2K

So, in Eq. (21) this is what we expect. We ought to get A == 3 H? on the background shell, so the first
order part of the Lagrangian vanishes when the background field equations are imposed, and more-
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over this remains true even once we have rescaled the 4 field.

Now we repeat the above process but at second order. Here is what we believe to be the total wave
operator (i.e. obtained by adding Eq. (9) with Eq. (10)) when expressed in terms of the perturbed field
and the curvature (i.e. not trace-reverse or Einstein tensor).

N \/_7-5(2 hqb hub - hqn hbb) \/_75 hub hcc R[V]c‘b \/_7-5 haq hbc R[V]bc

+ + -
4k 4K 4k
’ 4 b 5 ’ = ' =
_g hqb }‘ICIc R[V] ¢ _g hqb hub R[V] _g hQO hbb R[V] _g hub vauhcc
+ - - +
K 4k 8k 8k
(22)
V=G hE VR, =G hy VK -G h, VA -G R VI
-_— -_— + -_—
8k 8k 4 4k
’_5 huu chbhbc ,_5 hub chbhqc ’_5 hqb VCVchab ’_5 hno chchbb
+ - +
4K 2K 4k 8k
Now we will try to look at the Weyl-transformed version of Eq. (22).
(N-2H) hy, 1™ a® (-A+H) K, K, a> H2 RS g a?n® n’ W K atn® ot
+ - - +
2k 4k K 2k
H hgb a ”n Vbhcc hub vauhcc H hbc a nu Vchqb H hbb a nu Vchuc (23)
-_— + -— -_—

2K 4K 2K 2K

H hub a n° Vchbc hub chbhuc hqq chbhbc hub chchqb hna chchbb
+ = = + ==
2K 2K 4 K 4 K 4 k

We can see that the power of the scale factor in the transformation is appropriate, since we will recover
the (unscaled) Fierz-Pauli operator among the second-order terms in Eq. (23).

Now we look at the part of the variation that we keep in the second-order operator, recalling that this
will now be the variation of the rescaled perturbation (hence we need to divide by the scale factor).

The rescaled transformation in Eq. (11), which transforms the rescaled 4, is as follows.
2HG,, V' a’n +avVeV, +aViV, (24)

Now we wish to impose this variation in Eq. (24) on the wave operator Eq. (23).
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HAN-3H) " W a*n, 6H(N-3H) V" n, a*r’
- +
K K

(A-3H) V" a®Voh®, 2(N-3H) V* a*Vph P

K K

So once again, as with the cancellation of Eq. (14) with Eq. (16), the gauge transformation we are
proposing is indeed a gauge transformation of the linear theory when we impose the background shell
condition A == 3 H .

++» DefTensor: Defining tensor StressEnergyla, b].

We define the (purely perturbative) stress-energy tensor7™"" which is supposed to be the conjugate
sourceto 4" . Thus the second order Lagrangian Eq. (22) is augmented by the following source cou-

pling term.

hy T (26)
Itis important to understand that Eq. (26) represents the conjugate source coupling after the Weyl
transformation has already taken place; thus we are quite loose about what7~  really means, just so

long as it is the appropriate current that would appear on the fictional flat spacetime.

Now we wish to impose the variation in Eq. (24) on the source coupling Eq. (26).
b
2HV a? 75 n -2HV a®> T, n° -2 aVT °== 27)
Now this condition remains true for any generating vector.

-H T ma nt+H 7-00 M _VQTmQ = (5}

Connection to Part Il Project: The conservation law obeyed by the effective flat-
space source is encoded in Eq. (28). It is clear that this just descends from the curved-space version
of the Bianchi identity, and so there are really four independent gauge constraints at play, just like
there were with the Fierz-Pauli model.

But what if we want to compute the scalar part of Eq. (28) in advance?

HT —H T 1 A"+ H 1 VT —H A VT " =YV T == 0 (29)

am

So, the condition Eq. (29) is also true.

Now we take the final version Eq. (29) and we convert it to a string which can be fed into a PSALTer
session later. Once PSALTer is loaded, we will be able to perform the mode decomposition and dis-
cover what the constraints on the source currents really are in terms of the spin-parity parts of the
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fields.

"HubbleScale”2xStressEnergy[a, —a] - HubbleScale?2«StressEnergy[-a,
—-m]xV[a]*V[m] + HubbleScale*V[a]*CD[-a][StressEnergy[m, -m]] - (30)
HubbleScalexV[a]*CD[-m][StressEnergy[-a, m]] - CD[-m][CD[-a][StressEnergy[a, m]]]"

Now we take the other version Eq. (28) and we do precisely the same thing.

"—(HubbleScalexStressEnergy[-m, —a]*V[a]) + (31)
HubbleScalexStressEnergy[a, —a]*V[-m] — CD[-a][StressEnergy[-m, a]]"

Linear theory for PSALTer

Here is the on-shell version of the Lagrangian in Eq. (23) which we will export to be used by PSALTer in

the calibration script.

b a b

H hy, h° FHH K HERS b, 7T HEhy KR on
- - - +
2k 2k i 2k

Hn' n® Vo, K VeV, H KT R Veh, MK, N Veh -
- + - -

2K 4K 2K 2K

VARG AR A (VI LA VG A S LA AN
+ - - +
2K 2K 4K 4k 4K

Here is the alternative ~wave operator' version of Eq. (32). To obtain it, we take the variational deriva-
tive of Eq. (32) with respect to 4, and then post-multiply with 4 to form a new scalar.

H oy 0 HER K, 2FHERE m n R HEhy KAt on
- - - +

K K K K

b

Q

7_{ hqb nu Vbhcc hab vathc H hbc na Vchub H hbb n Vchqc
- + - - (33)
K 2K K K

VAW A A (Y R A (VI Sl A 2 SR L A N
+ - - +
K K 2K 2K 2K

Now we take the final version Eq. (33) and we convert it to a string which can be fed into PSALTer.

"(HubbleScale?2xLinearMetric[-a, —b]«LinearMetric[a, b])/EinsteinConstant
- (HubbleScale”2«LinearMetric[a, —a]«LinearMetric[b, —b])/EinsteinConstant -
(2xHubbleScale?2«LinearMetric[-a, c]xLinearMetric[-b, —c]*V[a]*V[b])/EinsteinConstant
- (HubbleScale”2+LinearMetric[-a, —b]*xLinearMetric[c, —c]*V[a]«V[b])/EinsteinConstant
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+ (HubbleScalexLinearMetric[-a, b]*V[a]*CD[-b][LinearMetric[c, —c]])/EinsteinConstant
- (LinearMetric[a, b]*CD[-b][CD[-a][LinearMetric[c, —c]]])/(2xEinsteinConstant) +
(HubbleScalexLinearMetric[b, c]*V[a]*CD[-c][LinearMetric[-a, —b]])/EinsteinConstant —
(HubbleScalexLinearMetric[b, —b]*V[a]*CD[-c][LinearMetric[-a, c]])/EinsteinConstant —
HubbleScalexLinearMetric[-a, b]*V[a]«*CD[-c][LinearMetric[-b, c]])/EinsteinConstant
+ (LinearMetric[a, b]*CD[-c][CD[-b][LinearMetric[-a, c]]])/EinsteinConstant —
(LinearMetric[a, —a]*CD[-c][CD[-b][LinearMetric[b, c]]])/(2+EinsteinConstant) —
(LinearMetric[a, b]*CD[-c][CD[c][LinearMetric[-a, —b]]])/(2*EinsteinConstant) +
(LinearMetric[a, —a]*CD[-c][CD[c][LinearMetric[b, —-b]]])/(2xEinsteinConstant)"

Connection to Part il Project: In Egs. (34), (31), and (30) we have some expres-

sions that we'll study later in a PSALTer session. The key observation in this script is that the free
scalar theory on de Sitter spacetime picks up what looks like a tachyonic mass in Eq. (4). This is
emphatically not a tachyon, but the fact that it looks like one allows us to smoothly make contact
with the saturated propagator and spin-projection particle spectrum method. When we extend to
the far more complex case of dynamical gravity on the de Sitter background, our linear Lagrangian
becomes Eq. (32). Comparing back to Eq. (4), we notice that Eq. (32) is fairly obfuscated. It will be our
jobin the PSALTer session to show that it actually gives the same spectrum as normal GR, but with
the massless pole shifted to precisely the same tachyonic mass as appears in Eq. (4).



