4 Result on $\nabla(a \cdot b)$ from H+S

The result on $\nabla(a \cdot b)$ from Hestenes & Sobczyk we have difficulty remembering is ((1.43) on p53):

$$\nabla(a \cdot b) = a \cdot \nabla b + b \cdot \nabla a - a \cdot (\nabla \wedge b) - b \cdot (\nabla \wedge a) \tag{15}$$

5 Some further hard to remember algebraic results

From H+S p12:

$$a \cdot (A_r \wedge B_s) = (a \cdot A_r) \wedge B_s + (-1)^r A_r \wedge (a \cdot B_s)$$
(16)

and for $s \ge r > 1$

$$a \wedge (A_r \cdot B_s) = (a \cdot A_r) \cdot B_s + (-1)^r A_r \cdot (a \wedge B_s)$$
(17)

Note r = 1 case fits in as follows:

$$a \wedge (b \cdot B_s) = (a \cdot b)B_s - b \cdot (a \wedge B_s) \tag{18}$$

Also two very important ones from p7:

$$A_r \cdot (B_s \cdot C_t) = (A_r \wedge B_s) \cdot C_t \quad \text{for } r + s \le t \text{ and } r, s > 0$$

$$A_r \cdot (B_s \cdot C_t) = (A_r \cdot B_s) \cdot C_t \quad \text{for } r + t \le s$$
(19)

Another one from p15:

$$(b \wedge a) \times A = b \wedge (a \cdot A) - a \wedge (b \cdot A) \tag{20}$$