L= Lpy <(1)/1MW, GOk, Dy, Ly = 0) w.l.o.g. We package
six d.o.f into the 2-form field
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where the Maxwell field strengths are @F w = 26[/4 (Z)TV]

etc. We introduce Eq. (4) just to simplify the w" y-equations
6/6w", [ d*xeL ~ 0, which decompose to [199]
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where « suppresses contractions, but all parts are simplified
by (4). With a — 0 we recover entirely vanishing vacuum
torsion as expected in EC theory, otherwise Eqgs. (5a) to (5¢)
should be wavelike for dynamical torsion (if any). Itis simplest
to notice how all torsion dynamics can be confined to Bﬂv,
though that variable eliminates a single derivative in Eq. (4).
To extract the propagating (second-derivative) equation in
B . we take the antisymmetrised divergence of (5a), next

Hv
eliminating %G(I)T"[M for B, . (I)T”W,, (2)T/4 and (3)T” us-
ing Eq. (4), then using Egs. (5b) and (5¢) eliminate (2)Tu and
3) (Drp .

T, for B, and “'T",, , before finally recycling Eq. (5a)

to eliminate all remaining mT”W perturbatively in terms of
BW [199]. Upon integrating, we find (at least on flat space)
that the resulting equation descends from the effective theory
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A pathological kinetic term is revealed in (6), not e.g. the
safe p-form operator V[MBW]V[“BV"] [200]. Truncate (6)

at O (B*) as shown, then heuristically the canonical 2-form

has a mass ~ MP12 /B and becomes strongly coupled as B —
0, whereupon it drops out of the linear spectrum. The prob-
lem is only aggravated at higher perturbative orders. Next,
compare (6) with the seemingly unrelated NGR model [37,
201, 202]. That theory also has a dynamical 2-form B,uv =
Mplnl.j 5{”61 o which is different to (4). Instead of diverg-
ing as B — 0 the NGR 2-form mass vanishes, but again
this removes longitudinal polarisations from the linear spec-
trum [203-205]. Relative to our Eq. (6), NGR is positioned at
the far side of the non-Riemannian landscape: yet both theo-
ries fail as minimal deviations from the strict EC or MT mod-
els.

IV. Healthy spectrum with multipliers

Obviously Eq. (6) is sick: we will now show that our

(I)Aﬂw(l)T #ve term is the cure. For greater generality we
restore the whole axial vector sector by considering L =

Lpy (P2 - 0)+ Oy MBIZG)T”@)T# . Using the spin tensor
of matter eS”ij =-6/6w”, [ d*xeLyy, e = det ¢, Egs. (52)
to (5¢) become
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But Egs. (7b) and (7c) are Proca equations, whilst Eq. (7a)
eliminates (1)/1,4\/5 in the (asymmetric) e"ﬂ—equation. The an-
tisymmetric part is then an identity; the symmetric part is the
gﬂv—equation of the following effective torsion-free theory, to
be compared with Eq. (6)
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In (8), we confirm for full consistency that the residual torsion
reduces to the Proca pair in Egs. (7b) and (7¢), one of which is
a ghost, and the full model Lpy or Lpy ((2) 2 (3)) kills off the
ghost in either case. In contrast, it is critical to understand that
(4 , does not merely kill off the strongly coupled modes:
both Eq. (6) and Eq. (8) propagate six extra non-graviton d.o.f,
so Dy uv Weakens the strong coupling. In Eq. (3), valid for

a < 0, the mass of (Z)TM is
Dm? = -3Mp2(1 +2Pp) /4a. 9)

Perfectly analogous results hold for & > 0, and the (3)TM mass
is Om? = =3Mp* (1+8%u) /4a.

V. Details of strong coupling alleviation

We briefly explain the mechanism, assuming familiarity with
the Dirac algorithm [169, 191, 207-210] in which a theory has
constraints C; (see pedagogical introductions in [131, 211]).
We target the case L = Lpy ((2) 2 (3)) corresponding to

a > 0, while referring to Fig. 2. Let ¢§(P ~ 0 denote the
primary constraint caused by the spin-J, parity-P part of the

X-field momentum when n)J(P = d(eL)/dX’" is indepen-

. . P . . .
dent of velocity X" . Introduce uy in lieu of X/ " then the



