
3

𝐿 = 𝐿PV

(

𝜆(1) 𝜈𝜎
𝜇 , 𝜆(3) 𝜇, 𝜇(2) , 𝐿M → 0

)

w.l.o.g. We package
six d.o.f into the 2-form field

𝑀Pl𝐵𝜇𝜈 ≡ 2∇̊𝜎 𝑇(1) 𝜎
[𝜇𝜈] − 𝐹(2)

𝜇𝜈 + 3
4
𝜖𝜎𝜆𝜇𝜈 𝐹(3)

𝜎𝜆

+ 2 𝑇(2)
𝜎 𝑇(1) 𝜎

[𝜇𝜈] + 3𝜖𝜎𝜆𝜌[𝜇 𝑇(3)
𝜎 𝑇(1)

𝜈]𝜆𝜌 ,
(4)

where the Maxwell field strengths are 𝐹(2)
𝜇𝜈 ≡ 2∇̊[𝜇 𝑇(2)

𝜈]
etc. We introduce Eq. (4) just to simplify the 𝜔𝑖𝑗

𝜇-equations
𝛿∕𝛿𝜔𝑖𝑗

𝜇 ∫ d4𝑥𝑒𝐿 ≈ 0, which decompose to [199]

𝑇(1) 𝜎
𝜇𝜈 ≈ 𝛼

𝑀Pl

⎡

⎢

⎢

⎣

∇̊𝐵
⋏

+
𝐵∇̊𝐵
⋏

𝑀Pl
+

𝐵2 𝑇(1)
⋏

𝑀Pl

⎤

⎥

⎥

⎦

, (5a)

𝑇(2)
𝜇 ≈ 4𝛼

3𝑀Pl

[

∇̊𝜈𝐵
𝜈

𝜇 − 𝐵𝜎𝜆 𝑇(1) 𝜎𝜆
𝜇

]

, (5b)

𝑇(3)
𝜇 ≈

4𝛼𝜖 𝜈𝜎𝜆
𝜇

9𝑀Pl

[

∇̊𝜈𝐵𝜎𝜆 − 2𝐵𝜌
𝜈 𝑇(1)

𝜌𝜎𝜆

]

, (5c)

where ...⋏ suppresses contractions, but all parts are simplified
by (4). With 𝛼 → 0 we recover entirely vanishing vacuum
torsion as expected in EC theory, otherwise Eqs. (5a) to (5c)
should be wavelike for dynamical torsion (if any). It is simplest
to notice how all torsion dynamics can be confined to 𝐵𝜇𝜈 ,
though that variable eliminates a single derivative in Eq. (4).
To extract the propagating (second-derivative) equation in
𝐵𝜇𝜈 , we take the antisymmetrised divergence of (5a), next
eliminating ∇̊𝜎 𝑇(1) 𝜎

[𝜇𝜈] for 𝐵𝜇𝜈 , 𝑇(1) 𝜇
𝜈𝜎 , 𝑇(2)

𝜇 and 𝑇(3)
𝜇 us-

ing Eq. (4), then using Eqs. (5b) and (5c) eliminate 𝑇(2)
𝜇 and

𝑇(3)
𝜇 for 𝐵𝜇𝜈 and 𝑇(1) 𝜇

𝜈𝜎 , before finally recycling Eq. (5a)
to eliminate all remaining 𝑇(1) 𝜇

𝜈𝜎 perturbatively in terms of
𝐵𝜇𝜈 [199]. Upon integrating, we find (at least on flat space)
that the resulting equation descends from the effective theory

𝐿PV

(

𝜆(1) 𝜈𝜎
𝜇 , 𝜆(3) 𝜇, 𝜇(2) , 𝐿M, 𝑅̊ → 0

)

≅ −
𝑀Pl

2

2
𝐵𝜇𝜈𝐵

𝜇𝜈 + 𝛼3

𝑀Pl
2𝐵

2∇̊𝐵∇̊𝐵
⋏

+ 
(

𝐵6) . (6)

A pathological kinetic term is revealed in (6), not e.g. the
safe 𝑝-form operator ∇̊[𝜇𝐵𝜈𝜎]∇̊

[𝜇𝐵𝜈𝜎] [200]. Truncate (6)
at 

(

𝐵4) as shown, then heuristically the canonical 2-form
has a mass ∼ 𝑀Pl

2∕𝐵 and becomes strongly coupled as 𝐵 →
0, whereupon it drops out of the linear spectrum. The prob-
lem is only aggravated at higher perturbative orders. Next,
compare (6) with the seemingly unrelated NGR model [37,
201, 202]. That theory also has a dynamical 2-form 𝐵𝜇𝜈 ≡
𝑀Pl𝜂𝑖𝑗𝛿

𝑖
[𝜇𝑒

𝑗
𝜈], which is different to (4). Instead of diverg-

ing as 𝐵 → 0 the NGR 2-form mass vanishes, but again
this removes longitudinal polarisations from the linear spec-
trum [203–205]. Relative to our Eq. (6), NGR is positioned at
the far side of the non-Riemannian landscape: yet both theo-
ries fail as minimal deviations from the strict EC or MT mod-
els.

IV. Healthy spectrum with multipliers

Obviously Eq. (6) is sick: we will now show that our
𝜆(1)
𝜇𝜈𝜎 𝑇(1) 𝜇𝜈𝜎 term is the cure. For greater generality we

restore the whole axial vector sector by considering 𝐿 =
𝐿PV

(

𝜆(3) 𝜇 → 0
)

+ 𝜇(3) 𝑀Pl
2 𝑇(3) 𝜇 𝑇(3)

𝜇 . Using the spin tensor
of matter 𝑒𝑆𝜇

𝑖𝑗 ≡ −𝛿∕𝛿𝜔𝑖𝑗
𝜇 ∫ d4𝑥𝑒𝐿M, 𝑒 ≡ det 𝑒𝑖𝜇, Eqs. (5a)

to (5c) become

𝑆(1) 𝜇
𝜈𝜎 ≈ 𝜆(1) 𝜇

𝜈𝜎 + 𝛼
[

𝑇(2) ∇̊ 𝑇(3)
⋏

+ 𝑅̊ 𝑇(3)
⋏

+…
]

, (7a)

𝑆(2)
𝜇 ≈ 2

(

1 + 2 𝜇(2) )

𝑀Pl
2 𝑇(2)

𝜇 + 8𝛼
3
∇̊𝜈 𝐹(2) 𝜈

𝜇 , (7b)

𝑆(3)
𝜇 ≈ −

(

1 + 8 𝜇(3) )

𝑀Pl
2 𝑇(3)

𝜇 − 4𝛼
3
∇̊𝜈 𝐹(3) 𝜈

𝜇 . (7c)

But Eqs. (7b) and (7c) are Proca equations, whilst Eq. (7a)
eliminates 𝜆(1) 𝜈𝜎

𝜇 in the (asymmetric) 𝑒𝑖𝜇-equation. The an-
tisymmetric part is then an identity; the symmetric part is the
𝑔𝜇𝜈 -equation of the following effective torsion-free theory, to
be compared with Eq. (6)

𝐿PV
(

𝜆(3) 𝜇 → 0
)

+ 𝜇(3) 𝑀Pl
2 𝑇(3) 𝜇 𝑇(3)

𝜇

≅ −
𝑀Pl

2𝑅̊
2

+ 2𝛼
9

𝐹(2)
𝜇𝜈 𝐹(2) 𝜇𝜈 − 𝛼

2
𝐹(3)
𝜇𝜈 𝐹(3) 𝜇𝜈

+
𝑀Pl

2 (1 + 2 𝜇(2) )

3
𝑇(2)
𝜇 𝑇(2) 𝜇 −

3𝑀Pl
2 (1 + 8 𝜇(3) )

4
𝑇(3)
𝜇 𝑇(3) 𝜇

− 1
3

𝑇(2)
𝜇 𝑆(2) 𝜇 − 3

2
𝑇(3)
𝜇 𝑆(3) 𝜇 + 𝐿M

(

Γ̊
)

. (8)

In (8), we confirm for full consistency that the residual torsion
reduces to the Proca pair in Eqs. (7b) and (7c), one of which is
a ghost, and the full model 𝐿PV or 𝐿PV ((2) ⇄ (3)) kills off the
ghost in either case. In contrast, it is critical to understand that
𝜆(1) 𝜆

𝜇𝜈 does not merely kill off the strongly coupled modes:
both Eq. (6) and Eq. (8) propagate six extra non-graviton d.o.f,
so 𝜆(1) 𝜆

𝜇𝜈 weakens the strong coupling. In Eq. (3), valid for
𝛼 < 0, the mass of 𝑇(2)

𝜇 is

𝑚(2) 2 ≡ −3𝑀Pl
2(1 + 2 𝜇(2) )∕4𝛼. (9)

Perfectly analogous results hold for 𝛼 > 0, and the 𝑇(3)
𝜇 mass

is 𝑚(3) 2 ≡ −3𝑀Pl
2 (1 + 8 𝜇(3) )

∕4𝛼.

V. Details of strong coupling alleviation

We briefly explain the mechanism, assuming familiarity with
the Dirac algorithm [169, 191, 207–210] in which a theory has
constraints 𝐶𝑖 (see pedagogical introductions in [131, 211]).
We target the case 𝐿 = 𝐿PV ((2) ⇄ (3)) corresponding to
𝛼 > 0, while referring to Fig. 2. Let 𝜙𝐽𝑃

𝑋 ≈ 0 denote the
primary constraint caused by the spin-𝐽 , parity-𝑃 part of the
𝑋-field momentum when 𝜋𝐽𝑃

𝑋 ≡ 𝜕(𝑒𝐿)∕𝜕𝑋̇𝐽𝑃 is indepen-
dent of velocity 𝑋̇𝐽𝑃 . Introduce 𝑢𝐽𝑃

𝑋 in lieu of 𝑋̇𝐽𝑃 , then the


